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ABSTRACT To meet the performance demands of chip multiprocessors, chip designers have increased the
capacity and hierarchy of cache memories. Accordingly, a shared lower-level cache reduces conflict misses
by adopting a multi-way set-associative structure with high associativity. This structure allows fast access
because it allows access to all the ways in the cache set in parallel. However, it consumes a large amount
of dynamic energy. Therefore, various schemes have been proposed to increase the energy efficiency of
the cache memory. These schemes use way prediction or partial comparison to reduce unnecessary way
access. This paper proposes a way prediction algorithm suitable for a shared second-level cache with high
associativity. This algorithm is based on real-time way access dominance detection (WADD). Through this
detection, the proposed algorithm can determine the number and location of way candidates suitable for
each partial access pattern among the fragmented access patterns owing to the first-level cache replacement
policy and intermingled accesses by multiple cores. Through this process, the proposed algorithm can
implement an efficient way prediction. Simulation results show that the WADD exhibits the highest energy
efficiency among the comparison groups, thus reducing the energy-delay product by 13.5% compared with
the conventional cache withoutway prediction. This result is achieved by reducing theway prediction penalty
through fast detection and high prediction accuracy.

INDEX TERMS Cache memory, computer architecture, energy efficiency, multiprocessing systems, way
prediction.

I. INTRODUCTION
The demands for workloads with a large working set size
such as advanced applications such as 3D graphics-based user
interfaces or cloud-based digital services are growing in the
recent industry. Due to these market demands for high per-
formance, most platforms, including servers andmobile, have
adopted chip multi-processors (CMPs). A CMP requires high
bandwidth to meet the required performance. Cache memo-
ries with increased capacity and hierarchy are also required to
minimize performance bottlenecks. For example, theM1 chip
announced by Apple in 2020 features a shared 12MB second-
level (L2) cache for four high-performance cores and a
shared 4MB L2 cache for four high-efficiency cores. Accord-
ingly, the shared L2 cache applies high associativity with
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a large capacity to reduce conflict misses [1]–[4]. However,
these features make cache memory one of the most highly
power-consuming devices in modern processors. According
to Intel’s report [5], the energy consumed by a cache memory
is between 12% and 45% of the total energy consumed,
depending on the computation amount of the application.
Therefore, maximizing cache energy efficiency is a crucial
challenge for chip designers.

A commonly used cache architecture is multi-way set-
associative. Multi-way set-associative caches require less
search effort than fully associative caches. Moreover, they
sustain less data contention than direct-mapped caches. In a
set-associative cache, finding a way with the necessary data,
the tag array of all ways in the cache set in parallel should
be accessed and searched. Since the requested data exist in
only one specific way, a high-associativity cache is relatively
inefficient in dynamic power consumption [6]–[8].
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Several way prediction schemes for improving
cache energy efficiency have been proposed in the
literature [9]–[20]. Way prediction schemes predict the way
candidates based on previous cache accesses, allowing the
cache to access theway candidates only. Thus, these schemes
reduce the dynamic power consumption because they reduce
access to unnecessary ways. However, the cache suffers from
delay and power penalties if the prediction is inaccurate
because it reaccesses the other ways to find the correct way.
Therefore, high accuracy is essential.

Most way prediction techniques utilize the recently-based
locality property [9]–[14]. However, in the second-level (L2)
cache, the first-level (L1) cache replacement policy weak-
ens the locality property. Additionally, L2 caches have a
higher degree of associativity. Because of the combination of
fragmented access patterns and high associativity, the above
schemes are inefficient for a high-associativity L2 cache.
Way determination schemes [16]–[19] detect the regularity
of the cache access pattern in this environment. However,
for a shared L2 cache in CMPs, each core’s fragmented
patterns are intermingled. Therefore, various reference inter-
vals due to fragmented patterns reduce the way prediction
accuracy.

Schemes for pre-determining cache misses have also been
studied [21]–[25] as an alternative to using way prediction
to reduce the number of way candidates for the subse-
quent cache access. These schemes use partial tag compar-
ison [21]–[23] or the modified Bloom filter [24], [25]. They
can significantly reduce unnecessary accesses because they
detect non-selected ways in advance and halt access to the
data array of non-selected ways. However, they require addi-
tional hardware resources for implementation and often have
false positives. Hence, their efficiency is low in an L2 cache
with a large capacity and high associativity characteristics.

This paper proposes a way prediction algorithm based on
the way access dominance detection (WADD) for a shared
L2 cache with high associativity. This algorithm achieves
energy-efficient way prediction by maintaining high predic-
tion accuracy while using relatively few way candidates.
We call the concentration of access on specific ways way
access dominance, and call the specific ways dominant ways.
The proposed algorithm is motivated by occurring this way
access dominance as the workload progresses. Thus, the
WADD allocates small-sized counters for each way in the
set. These counters, updated on every cache access, can
detect the dominant ways in real-time. The WADD uses this
detection result to maximize energy efficiency by selecting
the appropriate number ofway candidates for cases where the
way prediction is necessary. The additional overhead required
to support this operation is only approximately 1% of the
target cache size. In this paper, the following contributions
are made:
• Since the proposed algorithm continuously detects the
dominant ways, it can quickly discover cache access
pattern changes. Consequently, it is possible to respond
to fragmented patterns in time with the L1 cache

replacement policy, thus reducing the way prediction
penalty in the L2 cache.

• The proposed algorithm identifies the cores accessing
each way and performs dominance detection for each
core separately. Since this algorithm handles each core’s
access patterns separately, it can perform the way pre-
diction unaffected, even in a shared cache environment
where accesses of multiple cores are intermingled.

• Since the proposed algorithm identifies the dominant
ways, the number of these ways can also be known.
Therefore, the WADD uses this scheme to dynamically
match the number of way candidates appropriate to the
current situation. Moreover, since this algorithm identi-
fies the number of dominant ways for each core, it can
quickly match the number of way candidates for each
core even in a situation where the access patterns of
multiple cores are intermingled.

The rest of the paper is organized as follows: Section II
introduces the related research works. Our motivations are
described in Section III, and the design of the WADD is
proposed in Section IV. In Section V, experimental settings
and results are discussed. Finally, Section VI concludes the
paper.

II. RELATED WORKS
Existing studies on saving dynamic energy for set-associative
caches apply way prediction [9]–[20] and pre-determined
cache misses [21]–[25]. Existingway prediction schemes can
be categorized into schemes that utilize the recently-based
locality property [9]–[14], schemes that utilize the regularity
of the cache access pattern [16]–[19], and a scheme that com-
bines them [20]. Schemes for pre-determining cache misses
use partial tag comparison [21]–[23] or the modified Bloom
filter [24], [25].

The most recently used (MRU ) scheme [11] considers a
single recently accessed cache way (i.e., the MRU) as the
way candidate for subsequent cache access. This scheme
is quite simple and easy to implement while significantly
reducing power consumption. ThisMRU scheme is one of the
most popular approaches among the recently-based locality
schemes. However, it exhibits low prediction accuracy in the
L2 cache because of its vulnerability to high associativity
and fragmented access patterns. However, since the exist-
ing recently-based locality scheme reflects program locality,
it can be helpful even in a high-associativity L2 cache if the
fragmentation problem can bemanaged. Therefore, otherway
prediction schemes have been applied to enhance the pre-
diction accuracy by exploiting the advantage of the recently-
based locality.
Way determination schemes [16]–[19] are helpful when the

current access pattern is incompatible with the recently-based
locality property or when the program has regular reference
intervals. Such schemes determine the way to be accessed
for the following cache reference from formalized access pat-
tern analysis. Thus, they require additional memory to store
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address information. This scheme can achieve significantly
higher prediction accuracy and reduce power consumption if
the working set size is smaller than the available cache size or
if the data reuse interval is constant. However, performance
is highly dependent on the size of the additional memory
required to store the address information. Consequently, a sig-
nificant amount of memory is required to achieve a high
prediction accuracy. Additionally, if the current working set
size is larger than the available cache size or the current
working set has various data re-reference intervals (RRIs),
the way determination schemes cannot ensure a sufficiently
accurate way prediction.
Access mode prediction (AMP) [18] is a way determina-

tion scheme that adopts a multicolumn-based way prediction
algorithm to improve prediction accuracy. The multicolumn-
based algorithm updates the major location and the least
significant log2 n bits of the major location’s tag for an
n-way set-associative cache in chronological order based on
the recently-based locality property. When a cache reference
occurs, it accesses the cache as a direct-mapped cache with
major location information. The AMP multicolumn-based
way prediction scheme exhibits high prediction accuracy
even for a high-associativity cache because it takes advan-
tage of the recently-based locality methods. However, it is
only valid for applications requiring a limited amount of
memory with short RRIs. Even with a short RRI, when a
massive memory operation is executed, the recently-based
locality is compromised because of fragmented access pat-
terns. Furthermore, the way prediction accuracy is insuffi-
cient when an application runs with diverse RRI because of
the thrashing issue of themajor location. Since this condition
usually occurs in high-end applications with shared lower-
level caches, such algorithms are unsuitable for multi-core
systems.

Recognizing a precise access pattern to ensure sufficient
prediction accuracy in a shared L2 cache is not an easy task,
given the diverse RRIs generated by fragmented patterns
and intermingled accesses from multiple cores. Hence, the
Way Affinity Table and Look-Ahead Buffer (WAT+LAB) [20]
algorithm, applied in a multi-core environment, focuses on
the sequential access property. The WAT+LAB algorithm
manages the way number information according to the pro-
cessor ID to alleviate the sequential access property. Access
patterns are classified into two groups for block-level pro-
cessing based on the sequential access property and the
recently-based locality (i.e., the way affinity property). How-
ever, WAT+LAB has the premise that most shared cache
accesses occur because the givenworking set is larger than the
available cache size. Consequently, a substantial part of the
shared cache access possesses the sequential access property.
Thus, the WAT+LAB algorithm is suitable for large-scale
memory operations, such as matrix and digital signal process-
ing. However, such schemes are unsuitable for shared cache
because intermingled access from multiple cores generates
diverse RRIs. As a result, the sequential access property
is compromised. Hence, these schemes are unsuitable for

multi-core systems and cannot discriminate the access pattern
characteristics correctly. Consequently, the way prediction
accuracy deteriorates remarkably.

Since identifying the proper access pattern is crucial in
improving the way prediction accuracy, the dynamic per his-
tory length adjustment policy (DHL) [15] adopts a history-
based algorithm, which exhibits the advantage of accurately
classifying each access pattern. This algorithm selects only
the valid history for the current access pattern and utilizes
it for way prediction in the L2 cache with a fragmented
locality. Furthermore, according to this prediction result, the
number of way candidates is adjusted to secure coverage in
a high-associativity cache. However, the history of access
patterns from multiple cores to the shared cache is mingled
in a CMP environment. Thus, there is a limitation in that the
valid history information is mixed and cannot be sufficiently
secured.

In the way halting (WH ) cache architecture [21], the pro-
posed scheme can reduce the number of active ways by
pre-determining a cachemiss instead of usingway prediction.
WH applies a fully associative halt tag array that stores the
least significant four tag bits of each way. This halt tag array
performs comparisons with the four least significant tag bits
of the address to detect non-selected ways in advance and
reduce unnecessary accesses. Additionally, when halt tag hits
do not exist, misses are detected in the decoding cycle, thus
significantly reducing the cache miss penalty. However, the
halt tag array cannot specify the current set because it com-
pares the partial tag with each fully associative array per way.
Thus, since the halt tag hit does not guarantee cache hits in the
current set, the energy efficiency decreases because of false
positives. Moreover, the lower-level cache has a relatively
large number of sets and requires many comparisons, which
increases the overhead of the fully associative halt tag arrays.

Theway-halted prediction (WHP) [22] appliesway predic-
tion to theWH to improve energy efficiency in excessive halt
tag hits caused by false positives ofWH. If the number of halt
tag hits exceeds one, the WHP designates a way candidate
using the MRU algorithm. If the way candidate (determined
by the MRU algorithm) is a halt tag miss, WHP accesses
all the ways with a halt tag hit. This scheme can achieve
more energy savings thanWH when the way prediction accu-
racy is guaranteed. However, high prediction accuracy cannot
be expected in a lower-level cache with high associativity
because of the weak locality property of fragmented patterns.
WHP also applies a fully associative halt tag array, which
increases the overhead in the lower-level cache.

The segmented tag cache (STC) architecture [23] also
proposes a scheme to avoid unnecessary data array access by
detecting non-selected ways. The STC applies a modified tag
array, which supports the following two access modes: the
partial access mode, which first accesses a small number of
low-order tag bits, and the full access mode, which accesses
all the tag bits. During this time, the partial access time must
be shorter than the data array decoding time. In this algorithm,
the non-selected ways and the correct way are effectively
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TABLE 1. Cache configuration for way access dominance analysis.

FIGURE 1. Way access coverage for each workload.

TABLE 2. Number of way candidates to secure each coverage
(single-core).

distinguished. Therefore, this algorithm can achieve excellent
performance in the L1 cache. However, unlike the L1 cache,
in the L2 cachewith high associativity, the partial access time
exceeds the data array decoding time, thus increasing each
access delay.

III. WAY ACCESS DOMINANCE DETECTION
We analyze each cache set’s way access dominance for each
access pattern to find a scheme to improve the way predic-
tion accuracy in a shared L2 cache with high associativity.
Accesses to the L2 cache have fragmented patterns because
of the replacement policy of the L1 cache. Moreover, access
patterns from multiple cores are intermingled in the shared
cache, further fragmenting the access patterns. Since this
characteristic weakens the access patterns’ recently-based
locality and makes the RRIs diverse, it is not suitable for
existing way prediction schemes.

Therefore, we focus on implementing an energy-efficient
way prediction algorithm,which does not impair performance
significantly while reducing power consumption by selecting

FIGURE 2. Way access coverage for each cache set for ’perlbench’.

TABLE 3. Multicore workload group configurations.

an appropriate number of possible way candidates. For this
purpose, each access pattern’s trend ofway access dominance
is analyzed when several access patterns are intermingled in
the L2 cache. We perform this analysis on each cache set.
When two or more consecutive misses occur in the cache set,
it is decided that the access pattern has changed. We consider
the section between these consecutive misses and other con-
secutive misses as a partial access pattern. Table.1 shows the
cache configuration used to analyze each workload’s trend
of way access dominance in the high-associativity L2 cache.
We use the Sniper multi-core simulator [28] for this analysis.

Fig.1 shows the coverage according to the number of way
candidates based on the number of ways accessed by each
workload within the same partial access pattern on a single-
core system. In the case of povray, just one way candidate
can cover 91.7% of the total way access. On the other hand,
GemsFDTD requires at least sixway candidates to covermore
than 50% of the total way access. Table.2 shows the number
of way candidates required for the workloads in Fig.1 to
secure a given coverage within a partial access pattern. Fig.1
and Table.2 show that several way candidates are required to
achieve accurateway prediction in a high-associativity cache.
Additionally, the required number ofway candidates for each
workload is different. Fig.2 shows the way access dominance
shown on different cache sets during perlbench. Even
for the same workload, it can be observed that each cache
set should be controlled individually because the number of
required way candidates is different for each cache set.

Fig.3 shows the coverage according to the number of
way candidates based on the number of ways accessed by
each workload group within the same partial access pattern
on a quad-core system. The workload groups used in this
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FIGURE 3. Way access coverage for each workload group.

TABLE 4. Number of way candidates to secure each coverage
(Multi-core).

process are configured by randomly selecting four workloads
in the SPEC CPU2006 benchmark [26]. Table.3 shows the
composition of each workload group. Even in a multi-core
system, the way access dominance varies depending on the
characteristics of the workloads that comprise each work-
load group. Table.4 shows that way access dominance in
multi-core systems is relatively less visible than in single-
core systems. Moreover, Table.5 shows that the multi-core
system has different trends ofway access dominance for each
core. Because of this characteristic, way prediction schemes
targeting shared caches require additional consideration of
fragmented access patterns than schemes targeting private
caches.

However, that advantage is only valid if the appropriate
way candidates are selected. Fig.4 shows the percentage of
ways actually accessed in the entire cache set during each
workload in a single-core system. Except for workloads, such
as povray and solplex, where accesses are dominant on
specific ways, it can be observed that most of the access
patterns access multiple ways at similar ratios. This result
means that the number of ways used by one partial access
pattern is limited, but the location of the way each partial
access pattern uses changes continuously. Therefore, theway
prediction scheme must correctly predict the location of each
way candidate and the number ofway candidates at that time.
Therefore, to achieve high-efficiency way prediction in

the shared L2 cache, it is necessary to determine the loca-
tion and number of dominant ways in the current partial
access pattern. Moreover, it is necessary to properly adjust
the number and location of the way candidates based on this

TABLE 5. Number of way candidates to secure each coverage.

FIGURE 4. Way access ratio for each workload.

analysis. In a shared L2 cache, accesses from multiple cores
are mixed, and the access ratio of each core changes. Hence,
the changes in each partial access pattern also vary. To meet
this need, we propose a way prediction algorithm that can
detect dominant ways for each core and adjust the number and
location of way candidates for each cache set in real-time.

IV. WAY-PREDICTION BASED ON WADD
The proposed WADD structure shown in Fig.5 is imple-
mented based on the above requirements. It consists of way
counters (which count the number of accesses to each way
in the set), a selective way activator (which selects way
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FIGURE 5. Proposed structure block diagram.

candidates), and a way prediction regulator (which controls
the number of way candidates). Since way counters con-
tinuously monitor the way access dominance for each core,
they are the basis for the detection of dominant ways. The
selective way activator selects the way candidates based on
this basis. The way prediction regulator records the history
of cache hit/miss outcomes and way prediction results in the
corresponding cache set. Thus, it quickly identifies changes
in partial access patterns based on this history. This fast iden-
tification compensates for the impact of locality worsened by
fragmented access patterns in lower-level caches such as L2
caches. Each of these components operates as follows.

The way counter consists of a 2-bit saturating counter that
counts the access according to the cache outcome for the
corresponding way in the set and a 4-bit marking bit (for a
quad-core system) that indicates the core that has accessed
the data stored in a corresponding way. These counters con-
tinuously monitor way access dominance by counting access
to each way. This continuous monitoring is transmitted to the
selective way activator. In this way, the monitoring of each
way counter continues while the partial access pattern is
maintained. And then, when it is determined that the partial
access pattern changed due to consecutive misses in the
corresponding cache set,WADD resets the way counters cor-
respond to the core. The overhead to implement this operation
is estimated to be close to 250 transistors for each cache set
because 2-bit saturating counter and 4-bit marking bits are
allocated every way.

The selective way activator selects the way candidates
among the ways marked with the currently accessed core.
If the way prediction is turned on, the selective way activa-
tor selects as many way candidates as the way prediction
regulator specifies. At this time, the selective way activator
selects the way candidates in the order of the highest way
counter value (dominant ways). If several ways have the same
way counter value, the selective way activator determines
the priority in the MRU order. Then, when the cache finds
the correct way, the priority value of that way (determined
by the selective way activator) is sent to the way prediction
regulator. If the way prediction is turned off, the WADD
determines the waysmarkedwith a currently approached core
as way candidates. Therefore, it is possible to continuously

FIGURE 6. Flow chart of proposed algorithm.

reduce the waste of dynamic energy regardless of whether
the way prediction is turned on or not. For each cache set,
the overhead to implement this operation is estimated to be
more than 200 transistors because it allocates comparators to
compare values received from way counters and AND gates
to control access to the tag array.

The way prediction regulator helps in energy-efficient
way prediction by regulating the number of way candidates
or switching way prediction. The way prediction regulator
stores the history of cache results, way prediction results,
and priority values of the correct way for each core. It also
records whether the difference between the number of way
candidates determined by the way prediction regulator and
the priority value of the correct way is zero. The history stored
in this way becomes a criterion for determining the number
of way candidates. Suppose continuous cache hits occur in
one core while the way prediction is turned off. In this case,
the way prediction regulator determines that a new partial
access pattern has been detected and turns on way predic-
tion for the corresponding core. The initial number of way
candidates is determined as the number of ways whose way
counter value is one or more among the ways marked with
the corresponding core. With way prediction turned on, when
successive prediction hits occur, theway prediction regulator
attempts to reduce way candidates for efficient way predic-
tion. Suppose it is confirmed through the history of the core
that the difference between the number of way candidates
and the priority value of the correct way is non-zero during
successive prediction hits. In this case, the way prediction
regulator decides to reduce the number of way candidates.
On the other hand, if prediction misses occur continuously
despite consecutive cache hits, the way prediction regulator
attempts to increase prediction accuracy by designating the
maximum value among the priority values of the most recent
correct way stored in history as the following number of way
candidates. Subsequently, if consecutive cache misses occur
in one core, the way prediction regulator determines that the
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partial access pattern has changed. Thus, the way prediction
regulator prepares for a new partial access pattern by initial-
izing the way counter values marked by the corresponding
core while turning off the way prediction for that core. After
that, when turning on theway prediction again, the number of
way candidates for the same core is retrieved. For each cache
set, the overhead to implement this operation is estimated to
be less than 200 transistors because comparators are required
to record and compare various histories for each core.

Changes in partial access patterns can be quickly iden-
tified because WADD monitors the way access dominance
using multiple counters and manages the various histories for
each core. This quick identification and application make it
possible to quickly respond to each access pattern in frag-
mented patterns caused by the L1 cache replacement pol-
icy and mixed access of multiple cores, making it possible
to implement efficient way prediction. For each cache set,
WADD requires approximately 650 transistors as overhead
for all implementations. In a 16-way set-associative cache
structure with a cache block size of 64-byte, the overhead of
the proposed scheme is estimated to be close to 1% of the
total L2 cache size. Preparing for the next way prediction,
including the way prediction regulator’s cache result update
andway counter update, has no significant impact on latency,
as it proceeds from the time the access to the L2 cache is
completed until the subsequent access to the same set index
occurs.

V. EXPERIMENTAL RESULT
A. METHODOLOGY
Table.3 in Section III presents the workload groups used
to evaluate multiple algorithms in a shared cache environ-
ment. These groups are used with reference inputs in the
Sniper multi-core simulator [28]. The cache configuration is a
64-byte block of a 16-way 4 MB shared L2 cache for a quad-
core processor. This cache consists of a multi-bank cache
with eight banks. Based on this configuration, the dynamic
power dissipation and latency parameters are measured using
CACTI [29] on the 32 nm process. Measured parameters con-
sist of power and delays consumed by various components
such as decoders and output drivers for each access. We put
these parameters into the equations used in [22] to model the
energy and delay.

In the case of energy, the fundamental energy consumption,
including the decoder and output driver of the tag array or data
array, is 93.16 pJ based on the conventional cache without
way prediction. The overhead of each scheme is added to this
value. In the case of the MRU, the overhead is negligibly
small. The WHP has an overhead of 6.00 pJ due to the
increased set index in the L2 cache. Attached is an overhead
of 1.39 pJ for STC, 0.84 pJ for DHL, and 1.14 pJ forWADD.
At this value, additional energy of 3.24 pJ (3.07 pJ in the
case of WHP) is consumed per way candidate. When a way
prediction miss occurs, 0.14 pJ of energy and the energy
of other way access are consumed because the tag array is

FIGURE 7. Cache access delay normalized to the conventional cache.

FIGURE 8. Way prediction hit ratio (%) for different algorithms.

reaccessed. In addition, a penalty of 1.03 nJ is added in the
case of a cache miss.

In the case of delay, the latency is defined as 12 cycles
when a cache hit occurs based on the conventional cache. The
STC has an overhead of two cycles because it requires a lot
of partial access time in the L2 cache environment. If a way
prediction miss occurs, the tag array is reaccessed, and there
is a penalty of four cycles. In addition, in the case of a cache
miss, a penalty of 73 cycles is added.

B. CACHE ACCESS DELAY
Fig.7 shows the delay of each cache access for the MRU,
WHP, DHL, STC, and WADD. The values are normalized
to the access delay in a conventional cache without way
prediction. In a shared L2 cache, the access patterns from
multiple cores are intermingled, whereas the access patterns
are fragmented in the L1 cache. This environment results
in inferior accuracy of the recency-based locality scheme.
Fig.8 shows that the MRU algorithm has a low accuracy of
approximately 41%. The scheme using a single way candi-
date exhibits a limitation in performing way prediction based
on the L2 cache’s fragmented pattern with high associativity.
We can check this limitation through the access delay.

In contrast, theDHL andWADD algorithms apply multiple
way candidates to ensure prediction accuracy. Consequently,
these algorithms achieve an accuracy of 1.4 and 2.3 times,
respectively, more than the MRU algorithm. Using multiple
way candidates leads to a higher dynamic energy consump-
tion than using oneway candidate. However, the access delay
is reduced by reducing the prediction-miss penalty through
high accuracy.
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FIGURE 9. Energy consumption normalized to the conventional cache.

The WHP applies the MRU algorithm for way prediction
and exhibits an accuracy similar to that of the MRU algo-
rithm. TheWHP pre-determines the non-selected ways using
the halt tag before way prediction. Because of this process,
theWHP can reduce unnecessary way accesses and determine
cache misses quickly. However, the halt tag of WHP is not
as accurate as the partial access of STC. The WHP false
positives are particularly noticeable in L2 caches with a large
number of cache sets. Consequently, the filtering of the halt
tag cannot efficiently reduce the access delay.

On the other hand, as shown in Fig.7, STC exhibits the
second-highest access delay. This result is related to the
timing-conflict problem of the STC. In the L1 cache, which is
the original target of the STC, the partial access time does not
exceed the decoding time. Therefore, the STC does not have
a delay overhead. However, an L2 cache with high capacity
and associativity requires a high partial access time. For
this reason, the partial access time significantly exceeds the
decoding time, thus increasing the overall delay. Therefore,
the STC exhibits the second-highest delay in this experiment,
targeting the L2 cache.

C. DYNAMIC ENERGY CONSUMPTION
Fig.9 shows the dynamic energy consumption of each cache
access for the MRU, WHP, DHL, STC, and WADD. The val-
ues are normalized to the energy consumption in the conven-
tional cache without way prediction. In this experiment, the
WHP and DHL exhibit average energy consumption without
significant improvement, despite using amore complex struc-
ture than the MRU algorithm. The WHP finds non-selected
ways in advance using fully associative halt tag arrays to
reduce unnecessary way accesses. However, since the WHP
allocates these halt tag arrays for each way, it cannot specify
the current set. In other words, there is a false positive that
the halt tag hit does not guarantee the cache hit in the current
set. This problem deteriorates, especially in large-capacity
L2 caches. For example, in the 16-way 4 MB shared L2
cache with the 64-byte block used in this experiment, the
number of the set index is 4096. If a hit occurs in one entry
among 4096 entries in the halt tag array, a halt tag hit occurs.
Consequently, Fig.10 shows that the WHP cannot reduce the
average number of ways accessed than the MRU algorithm.
Additionally, each of the fully associative halt tag arrays must

FIGURE 10. Average number of cache way accessed.

compare 4096 entries per cache access. Consequently, the
WHP energy efficiency is further reduced because it requires
more dynamic energy consumption in the L2 cache than in
the L1 cache.

TheDHL adopts a history-based algorithm to classify each
access pattern accurately. This feature is required to increase
the energy efficiency of L2 caches with fragmented access
patterns. However, the access patterns from multiple cores
are intermingled in the shared cache, causing further frag-
mentation. For this reason, there is a limit to how the DHL
recognizes the access pattern and secures valid history infor-
mation sufficiently. Additionally, once a cache miss occurs,
the DHL returns to the patterning reset state. It takes at least
three consecutive cache hits and two consecutive prediction
hits to return to the power-saving mode. Thus, in a shared
L2 cache where frequent cache misses occur due to frequent
pattern changes, the DHL power-saving mode is maintained
for a short period. TheDHL performsway prediction only for
45.7% of the total cache hit access in this experiment.

The STC exhibits the lowest energy consumption on
average. Since the STC pre-determines non-selected ways
through the partial access mode, there are very few unnec-
essary way accesses, including sensing errors caused by
column-wise data randomization. Hence, it exhibits relatively
low energy consumption, including the energy overhead for
partial access. Furthermore, even if there is no partially
matchedway in the partial access, cachemisses can be imme-
diately determined without unnecessary tag array access, thus
further reducing unnecessary way accesses. Fig.10 shows that
the average number of ways accessed by STC in a 16-way set-
associative cache is less than two.

The second algorithm exhibiting the lowest energy con-
sumption is the WADD proposed in this paper. The WADD
detects the dominant ways quickly and responds appropri-
ately to increase energy efficiency. Although this algorithm
does not have a small number of way accesses because of
multiple way candidates, the actual dynamic energy con-
sumption differs from the STC by only approximately 1.1%
because of the increased prediction accuracy. The WADD
uses fewer ways than other way prediction algorithms such
as MRU, WHP, and DHL while still exhibiting considerable
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FIGURE 11. Energy-delay product normalized to the conventional cache.

prediction accuracy. Additionally, even in a shared L2 cache,
where partial access pattern changes are frequent because of
quick pattern adaptation, way prediction can be performed on
an average of 92.3% of the total cache hit accesses. Thus, the
WADD can increase the energy efficiency while inducing less
way prediction penalty.

D. ENERGY EFFICIENCY
Fig.11 shows an Energy-Delay Product (EDP) graph. The
halt tag of the WHP pre-determines non-selected ways, but
several false positives occur in the lower-level cache with
a large capacity. Thus, the halt tag cannot effectively filter
out unnecessary way accesses. Fig.10 shows that the MRU
and WHP algorithms, which use the same way prediction
scheme, have a similar average number of ways accessed.
Thus, theWHP can slightly reduce the delay compared to the
MRU algorithm. However, this cannot reduce the dynamic
energy because of the overhead of operating the halt tag.
Consequently, the WHP does not exhibit significant energy
efficiency improvement compared to theMRU algorithm.
Since the DHL uses multiple way candidates, it consumes

slightly more dynamic energy than theMRU algorithm. How-
ever, DHL improves the way prediction accuracy by 1.4
times. Consequently, theDHL can improve the overall energy
efficiency by reducing the delays by approximately 6% com-
pared with theMRU algorithm. However, theDHL has 45.7%
of the total cache hit accesses that the way prediction has
operated and exhibits a prediction accuracy of 58.6%. In other
words, the DHL can further improve energy efficiency by
improving its way prediction scheme.
The STC pre-determines non-selected ways by applying

the partial access mode, thus filtering out the most unneces-
sary way accesses. Consequently, the STC consumes nearly
8% less dynamic energy than the MRU algorithm, including
the energy overhead for partial access. However, in the par-
tial access mode, false positives can also occur. For a cache
hit, the STC uses an average of approximately 1.8 ways per
access. Moreover, even if the partial access mode fails to
pre-determine the cache miss, the STC accesses about 1.2,
which is the partially matched ways. This case accounts for
approximately 56.9% of all cache misses. Therefore, the STC
cannot significantly reduce the dynamic energy consumption
and delay. Additionally, the partial access time becomes an

FIGURE 12. Way prediction hit ratio divided by the number of way
accessed.

overhead in the lower-level cache with a large capacity and
high associativity.

The WADD uses counter-based way access dominance
detection to perform efficient way prediction on the shared
L2 cache with a mixture of fragmented access patterns. Con-
sequently, theWADD can respond quickly to frequent pattern
changes, and thus, it uses fewer than half the number of ways
compared with theMRU,WHP, andDHL, exhibiting a 92.5%
accuracy. Fig.12 shows the way prediction hit ratio divided
by the number of ways accessed. We can observe that the
WADD performs efficient way prediction by selecting appro-
priate way candidates utilizing the way access dominance
detection. Consequently, since the WADD uses multiple way
candidates, the dynamic energy consumed is approximately
2% more than the STC. However, the WADD exhibits the
highest energy efficiency among the comparison groups by
reducing the penalty through high prediction accuracy.

VI. CONCLUSION
This paper proposes a way prediction algorithm based on
the way access dominance detection for a shared L2 cache
with high associativity. Since the proposed algorithm contin-
uously detects the dominant ways, it is possible to quickly
identify the partial access pattern change & the trend of way
access dominance and implement efficient way prediction
in response to that. The additional overhead to support the
WADD operation is considered in twoways: delay and energy.
WADD beginsway access dominance detectionwhen the cur-
rent L2 cache access operation is complete and prepares for
the following way prediction before the subsequent L2 cache
access occurs. Therefore, there is very little delay overhead.
In contrast, the energy overhead for the operation of eachway
counter andway prediction regulator requires approximately
1% of the target conventional cache.

The disadvantage ofWADD is that it cannot save dynamic
energy reliably because it uses multiple way candidates to
secure the way prediction accuracy. However, although it
maintains high prediction accuracy, the number of ways
accessed is less than half that of other way prediction algo-
rithms, resulting in higher energy efficiency. Nevertheless,
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the WADD still has room for further development. The per-
centage of accesses with way prediction activated is 92.3%
of the total cache hit accesses. This result is also related to
WADD considering successive cache misses as the criterion
for partial access pattern change and successive cache hits as
the criterion for way prediction activation. This characteristic
is the cause of the weakness that WADD cannot effectively
respond when the toggle between cache hits and cache misses
is repeated. This situation occurs at approximately 6% of
the workload accesses used in the experiment. The results
showed that the WADD exhibits a 96.7% way prediction
activation rate, excluding this weakness. Therefore, if the
response to this weakness can be improved, and this improve-
ment can enhance the prediction accuracy, theWADD energy
efficiency can be further improved.
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